首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704449篇
  免费   69616篇
  国内免费   430篇
  2018年   10917篇
  2017年   10685篇
  2016年   11452篇
  2015年   10522篇
  2014年   12600篇
  2013年   18301篇
  2012年   22069篇
  2011年   26425篇
  2010年   18568篇
  2009年   17367篇
  2008年   22940篇
  2007年   24883篇
  2006年   18185篇
  2005年   18024篇
  2004年   17780篇
  2003年   17335篇
  2002年   16753篇
  2001年   33694篇
  2000年   33955篇
  1999年   26001篇
  1998年   7967篇
  1997年   8564篇
  1996年   7850篇
  1995年   7442篇
  1994年   7182篇
  1993年   7242篇
  1992年   20709篇
  1991年   20069篇
  1990年   19347篇
  1989年   18882篇
  1988年   17289篇
  1987年   16229篇
  1986年   15136篇
  1985年   14953篇
  1984年   12213篇
  1983年   10325篇
  1982年   7477篇
  1981年   6747篇
  1980年   6409篇
  1979年   11340篇
  1978年   8740篇
  1977年   8046篇
  1976年   7287篇
  1975年   8240篇
  1974年   9035篇
  1973年   8752篇
  1972年   8538篇
  1971年   7803篇
  1970年   6336篇
  1969年   6070篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
Data on the trophic associations of beetles with plants in the east of the Russian Plain are summarized and comparative analysis of host specialization of different groups of phytophagous beetles is performed. In terms of the width of the regional trophic spectrum, monophages and narrow oligophages prevail among the Curculionoidea as a whole and in the families Curculionidae and Apionidae in particular, while moderate and broad oligophages prevail in the Chrysomeloidea and in the family Chrysomelidae. Two-thirds of the regional fauna (66%) of Curculionoidea are closely associated with plants of one genus; by contrast, in Chrysomeloidea almost 40% of the species can develop on plants from different genera of one family, the fraction of the narrowly specialized forms comprising only 43%. The higher level of trophic specialization of weevils (Curculionidae, Apionidae) and seed beetles (Bruchidae), as compared to leaf beetles (Chrysomelidae), is probably due to the larval endophagy of most species of these families. Analysis of the distribution of beetles over host plants has shown that the specialized forms are associated with plants of 65 families (about 60% of the regional flora in the east of the Russian Plain). Distribution of beetles over plant families is very non-uniform. Most of the specialized forms (78%) are associated with plants of 15 families, three of which (Asteraceae, Fabaceae, and Brassicaceae) include hosts of more than onethird of the beetle species (37%). Monophages and narrow oligophages are recorded on 201 genera of plants from 59 families. Polyphagous species are recorded on plants of 58 families. The specific features of the distribution of phytophagous beetles over host plants (as compared to other insects) is a high fraction of species developing on coenophobes (particularly those of the family Brassicaceae) typical of the pioneer stages of successions with sparse herbaceous cover, and a small number of species associated with grasses and sedges. These features are most conspicuous in the fauna of Curculionidae.  相似文献   
105.
Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3′ acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.  相似文献   
106.
A. Kumar  S. Sharma  S. Mishra 《Plant biosystems》2016,150(5):1056-1064
This study was conducted to study the long-term impact of bioinoculants, Azotobacter chroococcum and arbuscular mycorrhizal fungi (AMF) on growth and biomass yield of Jatropha curcas grown in nursery and in field conditions. The experiment was set up in a randomized block design, and the following treatments was designed (T1 = control, T2 = Azotobacter, T3 = inoculation with AMF, and T4 = inoculation with Azotobacter + AMF). Data on various growth attributes (shoot height and shoot diameter) and biochemical parameters [leaf relative water content (LRWC), sugars, protein, and photosynthetic pigments] were recorded up to 6 months in the nursery and in the field (18 months). Results pertaining to morpho-physiological traits showed Azotobacter and AMF consortia increase shoot height, shoot diameter, LRWC, sugars, proteins, and photosynthetic pigments over control under nursery conditions. Besides enhancing the plant growth, these bioinoculants helped in better establishment of Jatropha plants under field conditions. A significant improvement in the shoot height, shoot diameter, fruit yield/plant, and seed yield (g)/plant was evident in 18-month-old Jatropha plants under field conditions when Azotobacter and AMF were co-inoculated. This work supports the application of bioinoculants for establishment of Jatropha curcas in semi-arid regions.  相似文献   
107.
Parasitic helminth infections have a considerable impact on global human health as well as animal welfare and production. Although co-infection with multiple parasite species within a host is common, there is a dearth of tools with which to study the composition of these complex parasite communities. Helminth species vary in their pathogenicity, epidemiology and drug sensitivity and the interactions that occur between co-infecting species and their hosts are poorly understood. We describe the first application of deep amplicon sequencing to study parasitic nematode communities as well as introduce the concept of the gastro-intestinal “nemabiome”. The approach is analogous to 16S rDNA deep sequencing used to explore microbial communities, but utilizes the nematode ITS-2 rDNA locus instead. Gastro-intestinal parasites of cattle were used to develop the concept, as this host has many well-defined gastro-intestinal nematode species that commonly occur as complex co-infections. Further, the availability of pure mono-parasite populations from experimentally infected cattle allowed us to prepare mock parasite communities to determine, and correct for, species representation biases in the sequence data. We demonstrate that, once these biases have been corrected, accurate relative quantitation of gastro-intestinal parasitic nematode communities in cattle fecal samples can be achieved. We have validated the accuracy of the method applied to field-samples by comparing the results of detailed morphological examination of L3 larvae populations with those of the sequencing assay. The results illustrate the insights that can be gained into the species composition of parasite communities, using grazing cattle in the mid-west USA as an example. However, both the technical approach and the concept of the ‘nemabiome’ have a wide range of potential applications in human and veterinary medicine. These include investigations of host-parasite and parasite-parasite interactions during co-infection, parasite epidemiology, parasite ecology and the response of parasite populations to both drug treatments and control programs.  相似文献   
108.
109.
Dynamic subcellular distributions of signaling system components are critical regulators of cellular signal transduction through their control of molecular interactions. Understanding how signaling activity depends on such distributions and the cellular structures driving them is required for comprehensive insight into signal transduction. In the activation of primary murine T cells by antigen presenting cells (APC) signaling intermediates associate with various subcellular structures, prominently a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell. While actin dynamics are well established as general regulators of cellular organization, their role in controlling signaling organization in primary T cell:APC couples and the specific cellular structures driving it is unresolved. Using modest interference with actin dynamics with a low concentration of Jasplakinolide as corroborated by costimulation blockade we show that T cell actin preferentially controls lamellal signaling localization and activity leading downstream to calcium signaling. Lamellal localization repeatedly related to efficient T cell function. This suggests that the transient lamellal actin matrix regulates T cell signaling associations that facilitate T cell activation.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号